

Course Outcome

Mathematics-III (BEME301T)

CO1	Apply Laplace Transform to solve ordinary differential equations, Integral equations and Integro-differential Equations.
CO2	Apply Fourier series in the analysis of periodic functions in terms sine and cosine encountered in engineering problems and Fourier Transform to solve integral equations.
CO3	Learn the concept of differentiating, integrating and expanding of analytic functions in complex numbers and their applications such as evaluation of integrals of complex functions.
CO4	Solve partial differential equations of first order, higher order with constant coefficients and of second order using method of separation of variables.
CO5	Analyze real world scenarios to recognize when matrices are appropriate, formulate problems about the scenarios, and creatively model these scenarios in order to solve the problems using multiple approaches.

Manufacturing Processes (BEME302T)

CO1	Understand the importance of manufacturing processes, techniques of pattern making and moulding with their properties. Design gating system along with selection of different types of melting furnaces and special casting process.
CO2	Get acquainted with the basic concept of joining process, welding process and its types, defects and application.
CO3	Get acquainted with the forming process for metal, mechanics of forming process along with different types of rolling machine.
CO4	Understand and define press working process along with its classification, types and terminology, different types of dies and introduction to shaping operation.
CO5	Understand introduction to plastics, ceramics and glasses, its properties, application, forming and its shaping.

Engineering Thermodynamics BEME303T

C01	Explain thermodynamics concepts, relate laws of the ideal gas, identify various thermodynamic processes and apply the laws to determine the energy transfer in terms of heat and work.
CO2	Explain the first law of thermodynamics and apply the law to evaluate open, closed systems, thermal components and devices.
CO3	Interpret the second law of thermodynamics, entropy, and apply the law to evaluate heat engine, heat pump, and refrigerator performance.
CO4	Relate various steam properties, and analyze the different types of processes using steam as working fluid to determine the energy transfer in terms of heat and work.
CO5	Compare various power cycles and analyze the cycles to determine the energy transfer in terms of heat, work and efficiency.

KINEMATICS OF MACHINES (BEME304T)

CO1	Perform kinematic and dynamic analysis (Displacement, Velocity, acceleration, Inertia forces)of a given mechanism using analytical and graphical method.
CO2	Understand the concept of compliant mechanisms.
CO3	Contrive or synthesize new mechanisms for specific requirements and Perform computeraided analysis of simple mechanisms.
CO4	Construct cam profiles and analyze the follower motion.
CO5	Understand Geometry of gear, its types, analysis of forces and motions of gear teeth. Studyof gear trains and governors.

Machine Drawing and Solid Modeling (BEME305P)

C01	Create 2-D orthographic manual drawings as well as digital drawing using CADsoftware packageof standard machine components
CO2	Apply standard practices for creation of 2-D orthographic manual drawings as wellas digital drawing using CAD software package of assembly with dimension detailing, part list and ballooning. Also perform 2-D detailing of assembly components.
CO3	Create 3-D solid model and 2-D detailing of simple parts using CADsoftware package and perform 2-D detaining.

Tal: Kalmeshwar, Nagpur, Maharastra-441501

CO4	Create production drawing and process sheet for standard machin components.
C05	Get hands on experience of reverse engineering process and concepts.

Computer Application/Programming (BEME306)

CO1	Understand and explore concepts in basic programming like data types, input/output functions, operators, programming constructs and user defined functions.
CO2	Develop capabilities of writing "C" programs in optimized, robust and reusable code.
CO3	Apply appropriate concepts of data structures like arrays, structures implement programsfor various applications.

Machining Processes (BEME401T)

CO1	Understand fundamentals of metal cutting
CO2	Understand basic construction and operations of lathe shaping, planning
CO3	Understand basics of milling and milling cutters. slotting
CO4	To know about the surface finishing processes.
CO5	Understand the basic of drilling, boring, reaming and broaching.

Fluid Mechanics & Hydraulic Machines BEME402T

CO1	Classify and explain fluid their properties, fluid in rest condition, types of
001	flow & flow measuring devices and mathematical application of equations on
	hydraulic components.
CO2	Explain behavior of fluid in motion condition and application of Bernoullie's
001	equation to fluid flow measuring devices.
CO3	Apply dimensional analysis to design hydraulic machines and different
000	losses of fluid flow through pipes.
CO4	(i) classify different layout of hydro-electric power plant and
	(ii) analyze design characteristics of hydraulic machines i.e. turbines
	(impulse and reaction), Pelton turbine, Francis turbine, propeller turbine
	and Kaplan turbine
C05	Explain the working principle & design of Centrifugal and reciprocating
000	pump & practical application of similitude & model testing.

Material Science & Engineering- BEME403T

CO1	Student will be capable to distinguish microstructure and analyze the effect of Crystalline nature of metals, construct and analyze Iron-Iron carbide equilibrium diagram.
CO2	Student will be able to study the commercial steels.
CO3	Student will be able to analyze and implement suitable heat treatment processes.
CO4	Student will be able to analyze the Cast Iron.
CO5	Student will be able to perceive the basics of powder Metallurgy for powder metallurgical components.

MECHANICS OF MATERIAL -BEME404T

CO1	Demonstrate fundamental knowledge about various types of loading and stresses induced
CO2	Draw the SFD and BMD for different types of loads and support conditions.
CO3	Estimate the strain energy in mechanical elements. And analyze the deflection in beams.
CO4	Can design shaft for various loading conditions.
CO5	Understand theory of failure and effective designing of column and struct.

Professional Ethics - BEME405T

CO1	Understand basic purpose of profession, professional ethics and various moral and social Issues.
CO2	Analyze various moral issues and theories of moral development.
CO3	Realize their roles of applying ethical principles at various professional levels
CO4	Identify their responsibilities for safety and risk benefit analysis.
CO5	Understand their roles in dealing various global issues

Heat Transfer -BEME501T

C01	Students will be able to define and compare the different modes of heat transfer and calculation of thermal resistance and heat transfer through plane and composite wall, cylinder and sphere with and without thermal contact resistances.
CO2	Students will be able to apply the concept of internal heat generation for the calculation of heat transfer for plane wall, cylinder and sphere and also learn about various types of fins and their significance in steady state conduction heat transfer calculations. It will also help them to understand the concept of unsteady state heat transfer.
CO3	Students will be able to select and apply appropriate empirical correlations to estimate forced convection and free convection heat transfer, for internal and external flows.
CO4	Students will be able to evaluate heat transfer rate by radiation from ideal and actual surfaces and enclosures of different geometries.
C05	Students will be able to evaluate heat exchanger performance for the given geometry and boundary conditions and design suitable heat exchanger geometry to deliver a desired heat transfer rate.

Energy Conversion -I (BEME502T)

601	Explain, classify, analyze layout of power plant, cogeneration principle of
CO1	steam generators(i.e. Boilers), boiler mountings & accessories and evaluate
	performance parameters of boiler.
CO 2	Explain the concepts of fluidized bed boilers and various draught system
CO2	and evaluate performance parameters of natural draught system(i.e. chimney)
	Explain the importance of steam nozzle and determine its throat area, exit
CO3	area, exit velocity. Also compare impulse and reaction steam turbines and
	explain the concept ofgoverning of steam turbine
	Explain the methods of compounding of steam turbine, various energy
CO4	losses in steam turbine and able to draw velocity diagrams of steam turbine
	blades to analyze the angles of the blades, work done, thrust, power,
	efficiencies of turbine.
CO5	Explain, classify steam condensers, cooling towers and evaluate performance
	parameters of surface condenser.

Design of Machine Elements- BEME503T

C01	Apply principals of static loading for design of Cotter joint, Knuckle joint
CO2	Design bolted, welded joints, power screws & pressure vessels
CO3	Design the power transmission shaft & coupling.
CO4	Design components subjected to fatigue or fluctuating stresses. Also, will be able to applyprinciples for determining bending stresses for desing of curved beams e.g. crane hook, C-Frame.
CO5	Design clutches, brakes and springs

Industrial Economics & Management- BEME504T

CO1	Understand the concept of demand and supply and its relationship with the
	price.
CO2	Relate various factors of production with reference to different economic
	sectors.
CO3	Analyze the causes and effects of inflation and understand the market
	structure.
CO4	Acquire knowledge of various functions of management and marketing
	management.
CO5	Perceive the concept of financial management for the growth of business.

Automobile Engineering –I (BEME505T)

C01	Demonstrate the vehicle construction, chassis, fuel supply system, lubrication system and cooling system in automobile.
CO2	Illustrate the principle and working of Transmission system and clutch, gear box, rearaxle drives, fluid flywheel, torque converter.
CO3	Identify the steering, suspension system and brake system.
CO4	Understand the applications of electrical/electronic system of automobile and wheels,tyres.
CO5	Explain the concept of electric vehicles, Hybrid vehicles, fuel cell vehicles and vehicle pollution norms. Appraise the automobile safety system and recent development in automobiles.

Automation In Production- BEME601T

C01	Get Acquainted With Automation, Its Type's ,Strategies , Assembly Line Balancing And Its Analysis, Methods Of Work Part Transport
CO2	Recognize fundamentals and constructional features of N.C, CNC and D.N.C machines and prepare a CNC program for given part.
CO3	Get Acquainted With The Robotic Configuration, Types Of Links, Joints, Grippers, Industrial Robotics And Robot Applications.
CO4	Cultivate Information About Automated Material Handling Systems, Automated Storage And Retrieval System (AGVS,AS/RS) Its Analysis
CO5	Get Acquainted With Automated Inspection (CAPP, CAQC, CMM) And Group Technology.
CO6	Recognize CAD/CAM, CIM,FMS, Understand The Concepts Of Shop Floor Control.

Energy Conversion-II (BEME602T)

C01	Classify various types of I.C. Engines and explain the working of its various components and systems.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Understand the working of Gas Turbine and Jet propulsion system
C04	Analyze the vapour compression refrigeration system and psychometric process.
C05	Understand the working of various types of compressors

Dynamics of Machines- BEME603T

C01	Comprehend the machine dynamics through basic principles to interpret their application and examine near to life problems due gyroscopic effects and determine the conditionsfor stability of ships, airplanes and automobile.
CO2	Analyze dynamic force conditions in planer linkages and cams to determine required driving torque condition (graphically/ analytically).
CO3	Estimate the unbalanced forces due to rotating and reciprocating masses in a mechanical system and calculate (graphically/ analytically) the balancing masses required for safe/smooth operation of these mechanical systems.

Tal: Kalmeshwar, Nagpur, Maharastra-441501

CO4	Identify the requirement of flywheel, brakes, and dynamometers in a mechanical systemand calculate inertia of flywheel and braking condition to be incorporated in engines and machines.
CO5	Recognize and interpret the concept of vibration in various mechanical systems and distinguish vibration characteristics for 1 & 2 DOF systems to evaluate the conditions for its control/ use.

(Elective-I) Operation Research- BEME604T

CO1	Recognize the importance and value of Operations Research and mathematical modelingin solving practical problems in industry.
CO2	Convert given situation to mathematical form and determine optimal settings.
CO3	Understand Operations Research models and apply them to real-life problems;
CO4	Manage projects for minimum total cost and smooth level of resources.
CO5	Make decisions related to age of replacement of equipment
CO6	Develop simulation of real life system to analyze and optimize system concerned.

Advanced Manufacturing Techniques- BEME605T

	Understand and compare the different Non-Traditional machining process
CO1	with theirneed, economics and application as well as historical development.
	Understand the basics of High speed grinding, Hot and Cold machining.
CO 2	Understand the basics of Abrasive Jet Machining (AJM), Ultrasonic Machining
02	process and Water Jet Machining.
	Get acquainted with the Electro-Chemical Machining, Electrochemical
CO3	Grinding, ElectricDischarge Machining. Get acquainted with the Electron Beam,
	Laser Beam and Plasma Arc Machining.
CO4	Know the basics of unconventional welding techniques and Solid Phase
	welding techniques.
CO5	Get acquainted with the basics of advance casting processes.

Environmental Studies- BEME608T

1	This course provides an integrated and interdisciplinary approach to the study
	of environment and solutions to environmental problems. This course will
	spread awareness among the students about environmental issues and shall
	alert them to find solutions for sustainable development.

INDUSTRIAL ENGINEERING- BEME701T

	The course objective is to introduce the discipline and profession of industrial
C01	engineering. This course provides knowledge and skills for designing work system as
	a form of integrated system, planning and controlling of a production system, ability
	to design a facility lay out.
CO2	To solve problem and organization of design process and value engineering and skill
	to apply methods in value engineering to improve the competitiveness of
	product/service, to apply ergonomics principles in industry and for planning and
	controlling maintenance system.

Automobile Engineering –I (BEME505T)

C01	Demonstrate the vehicle construction, chassis, fuel supply system, lubrication system and cooling system in automobile.
CO2	Illustrate the principle and working of Transmission system and clutch, gear box, rearaxle drives, fluid flywheel, torque converter.
CO3	Identify the steering, suspension system and brake system.
CO4	Understand the applications of electrical/electronic system of automobile and wheels,tyres.

CO5 Explain the concept of electric vehicles, Hybrid vehicles, fuel cell vehicles and vehicle pollution norms. Appraise the automobile safety system and recent development in automobiles.

COMPUTER AIDED DESIGN- BEME703T

	This course is aimed to develop; a framework where the designer works with computer
C01	to develop an Engineering system, CAD system that leads to effective use of
	computers in the entire design process, computer graphics & procedure about the
	geometrical modelling of engineering objects, controls on modeling parameter and
	graphics visualization techniques using computer.
CO2	At the end of this course, student will appreciate the importance of computers,
	computer graphics & numerical methods and will be able to use them for modeling,
	designing & analysis of mechanical components.

ENERGY CONVERSION – II (BEME704T)

	This course is aimed to develop; a framework where the designer works with computer
C01	to develop an Engineering system, CAD system that leads to effective use of
	computers in the entire design process, computer graphics & procedure about the
	geometrical modelling of engineering objects, controls on modeling parameter and
	graphics visualization techniques using computer.
CO2	At the end of this course, student will appreciate the importance of computers,
	computer graphics & numerical methods and will be able to use them for modeling,
	designing & analysis of mechanical components.

DESIGN OF MECHANICAL DRIVES - BEME705T

C01	This course is aimed to make the students conversant with design principles & design procedure of mechanical drives like coupling, flywheel, belt drive, chain drive, gear drive, wire rope etc
CO2	At the end of this course, student will be able to select and design appropriate mechanical drive/s.

INDUSTRIAL MANAGEMENT- BEME801T

CO1	This course is designed to understand the concept of administration & management;
01	basic Management Functions, the recruitment, man power planning at industry as well
	as various aspect governing with industrial acts, to understand plant management, Lay-
	outs, Industrial safety programes, classification of production systems.
CO2	It will also aware the students regarding concept of finance management, various sources of generating the finance and to understand the books of account & also about recent trends in management
	оооооо

REFRIGERATION AND AIRCONDITIONING- BEME802T

	This course is designed to understand the basic concept of refrigeration and air
C01	conditioning. Students will be able to understand the non- conventional refrigeration
	system and cryogenics through the knowledge of air conditioning which includes
	psychometric, heat load calculations, design of air conditioning system & transmission
	and distribution of conditioned air.

CO2 At the end of the course, students will be conversant with domestic, commercial and industrial applications of refrigeration and air conditioning.

ADVANCED MANUFACTURING TECHNIQUE- BEME803T

C01	This course is designed to provide students with an overview of a wide variety of non- traditional machining processes for processing of engineering materials. Students will learn
	principles, operations, capabilities, process parameters, economics and application of various
	non-traditional machining processes, various unconventional welding techniques, control
	parameters & also High Energy Rate Forming Process.
CO2	Upon completion of this course, students shall understand the importance of non-traditional
02	machining processes, unconventional welding techniques and be able to select and apply
	suitable processes for an engineering product.

ADVANCED MANUFACTURING TECHNIQUE- BEME804T

	This course is designed to provide students with an overview of a wide variety of non-
C01	traditional machining processes for processing of engineering materials. Students will
	learn principles, operations, capabilities, process parameters, economics and
	application of various non-traditional machining processes, various unconventional
	welding techniques, control parameters & also High Energy Rate Forming Process
CO2	Upon completion of this course, students shall understand the importance of non-
	traditional machining processes, unconventional welding techniques and be able to
	select and apply suitable processes for an engineering product.